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Sweden 

Received 23 June 1993 

Abstract, The order-parameter correlation functions of the &-invariant multicritical points 
in the unitary minimal series of conformal field theory we derived for a semi-infinite plane 
consvained to fixed or free boundary conditions. These yield the conesponding universai surface 
exponents which distinguish the behaviour behueen even- and odd-critical models. We also make 
explicit the interplay belween duality and boundary conditions. 

1. Introduction 

The implications of conformal invariance of a statistical mechanical system at criticality 
are very powerful in two dimensions. All so-called minimal conformal field theories are 
completely classified, the scaling dimensions of their operators are determined and one 
knows in principle how to calculate all correlation functions [1,2]. 

From extending this work to semi-infinite systems one also knows how to calculate 
correlation functions in critical systems with conformally invariant boundary conditions [3]. 
This has made it possible to determine surface exponents that govern correlations along a 
boundary of several statistical models including the Q-state Potts- and O(N)-models [3]. 
Moreover, the order-parameter correlation functions of the former have been constructed in 
a half-plane with fixed or free boundary conditions [4]. 

In this paper we go one step further by carrying out a detailed derivation of the 
order-parameter correlation functions in a semi-infinite plane, conseained to fixed or free 
boundary conditions, for a class of N-critical models that describe the simplest type of 
multicritical behaviour in a statistical system. These universality classes constitute the 
direct generalizations of the king and tricritical king models and span the whole series of 
unitary minimal models of conformal field theory [5].  It turns out that the behaviour of the 
order-parameter in a domain with a free boundary differs significantly between even- and 
odd-critical points, whereas for a fixed boundary it is essentially the same. 

The rest of the paper is organized as follows. First we introduce the multicritical Ising 
models and identify the relevant operators for the following analysis. In section 3, we briefly 
review how one derives correlation functions in an infinite plane and present the four-point 
functions of the order-parameters of the models we are considering. Using these explicit 
solutions, we continue in section 4 with the central part of the paper, the derivation of the 
corresponding half-plane correlation functions for fixed and free boundary conditions. We 
also extract the surface exponents and conclude with a discussion on duality. In the last 
section we summarize our results and discuss related work and future extensions. 

t Present address: Department of Physics, FM.15, University of Washington, Seattle, WA 98195, USA. 
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2. Multicritical king models 

In a Landau-Ginzburg classification of a multicritical point the free energy can have N 
degenerate minima corresponding to the co-existence of N different thermodynamic phases. 
For a certain choice of scaling fields these phases become identical, defining the N-critical 
point. This is described in two dimensions by the Hamiltonian 

where ~ ( r )  is a scalar order parameter, and the scaling fields g i ,  i = I ,  2, , . , , 2 N  - 2 
vanish at the N-critical point. The critical theories possess a &-invariance (9 --f -p) and 
have been mapped to the unitary series of minimal models M , ,  m = N + 1 = 3 , 4 ,  , . , , in 
conformal field theory [51. 

The first member of the series is the ferromagnetic spin-f king model (m = 3)  where 
the critical point defines the transition from co-existence of two ferromagnetic phases to a 
paramagnetic phase. The next member, the hicritical king model, is a diluted king model 
with spins and vacant sites in thermodynamic equilibrium. Here the two ferromagnetic 
phases can co-exist with a magnetically disordered phase whose ground state consists 
of vacant sites only. The subsequent universality classes in the series are analogously 
labelled as higher-critical king models. All these &-invariant multicritical points have also 
been identified by Huse [6] with certain multicritical transitions in the restricted solid-on- 
solid (RSOS) models--exactly solved by Andrews eral in a subspace of the full parameter 
space [7]. 

The relevant operators of each model correspond to primary fields $p,q with scaling 
dimensions xp,q = 2h,., given by the Kac formula for conformal weights 

The order parameter p (magnetization U in a ferromagnetic spin model) is identified with 
the most relevant non-trivial primary field 

62.2  =rp (3) 

The second relevant operator (energy density 6) is given by the renormalized composite field 
:p2: defined as the leading operator in the operator-product expansion (OPE) of pp - (pp). 
It is even under spin reversal (U + - U )  and is identified with 

for m 3 4. Less relevant operators are similarly classified as spin- or energy-like, depending 
on their behaviour under spin reversal. 

In the following, we will concentrate mainly on operators that appear in the OPE of uu, 
They belong to the even sector of the-Zz-symmetry and are, in addition to $1.1 (identity E) 
and 43, 

2 m - 2 .  
$3.1 =: v . 

2 
h3.1 = 1 + ; 
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For the king model, however, &,I is absent and $1.3 is identified with the energy density 
E .  For the tricntical king model these energy-like operators are distinguished by even- and 
oddness under the KrameroWannier duality-transformation ( E  + - E ) .  

In addition to these operators, it is necessary to include two others in the analysis. 
Depending on m they are either even or odd under spin reversal and are given by 

m-I . m + 3  
hz.1 = - 4m &,I =:v , 

3. Correlation functions in the plane 

Any infinite-plane correlation function of primary fields q5,,,s in the minimal series M ,  can 
be calculated by solving a partial differential equation of order p q .  Hence, for the order 
parameters U = q5z,2 in the multicritical king models, (U . . ' U )  satisfies such an equation 
of order four. Here we will derive this equation and present its solution for the four-point 
function in a form suitable for the half-plane analysis in the next section. 

A general method to derive an equation of this sort is to start by constructing a so- 
called null vector with zero norm [I]. The descendant states that can be generated from the 
primary state Ih) = #2,2[0) by applying the Virasoro generators Li  = L-, are degenerate 
at the fourth level, which means that the null vector Ix) = xl0) mnst have the form 

12) = Olh) = (L-4 + ciL-iL-3 + C Z L ? ~  + c3L?,L-2 + 4 ! 1 )  Ih) . (7) 

Any correlation function of the corresponding null field x and other primary fields will then 
be identical to zero. The parameters ci, i = 1,2,3 and 4, are determined by two consistency 
equations [ L I ,  Ollh) = 0 and [ L z ,  Ollh) = 0 that can be solved for each h = h2.2 in (3). It 
is then straightforward to verify that (x Ix) = 0. From the definition of a descendant field 
L-& in terms of Fourier modes of the energy-momentum tensor acting on $, it follows 
that [ 11 

([L-n$(Zl)l$(zZ) ' " $ ( Z N ) )  = C-n($ (Z I )$ (ZZ)  " ' 6 ( z N ) )  (8 )  

where C-,, is a differential operator: CO = h, C-1 = a/azl and 

Using analogous relations for more complex descendant fields and the explicit form of the 
null field x. one finds the correlation function (U . . . U )  to satisfy the fourth-order partial 
differential equation 
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Invariance under the projective conformal group restricts the possible form of correlation 
functions [SI and thereby the solutions of the above equation. In particular, a four-point 
function may be written in terms of afunknown function of a single variable only: 

with zij = zi - z j  and the cross ratio ~ 

212234 

z13z24 
p=- .  

Applying the partial differential operator in (IO) to this expression finally give-after 
tedious but simple calculations-the following fourth-order ordinary differential equation: 

6 - 16h + (3 -3% + 16h2)p(p - 1) 

P ( P  - 1) 
{ 16h’ 

(9 - 84h - 16h2(8h - 15))p(p - 1) - Sh(3 - Sh) d + 2(2p - 1)- 
P(P  - 1) dp 

d2 +2(9+4h(8h- 15 )+(63+16h( l lh - I5 ) )p ( ,~ -  1))- 
dp2 

F ( p )  = 0 (13)  
d3 + 12(3 - 4 h ) p ( p  - I)(2p - 1)- + 9p2@ - 

dp3 

with h given by ( 3 )  for each m = 3 , 4 , .  . . of M,. We have used this equation to verifyt the 
known correlation function (oaao) in [SI. Including some prefactors for later convenience, 
the four solutions are 

t Of (he four functionr in [SI, the one given by (A5c) does not satisfy owequation (13). However, it  also fails IO 
produce the Ising-model result (m = 3, h = $) which cao be wlculaled in B simpler fashion [I] .  Guided by this 
special case. we have corrected the corresponding solution and verified Ulnt it satisfies (13) for other vdues of m 
as well. 
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1 1 2 
X F  ( 1 t -  m + I ' l - -  ; 2 - -; P )  } m t l  m + l  

m ' 1  1 1 
m - 1  ( m  m + - P ) F  1 + -, 1 - -; 1 + -; p 

1 2 
1 - -  

1 
( 1 4 4  

with F(a ,  b; c; p )  a hypergeometric function. The labels of the solutions refer to the 
corresponding operators q5p,9 in the OPE 

which defines the structure constants Cp9.  
So far we have concentrated on the analytic dependence of (uuuu). Conformal 

invariance implies that the anti-analytic dependence satisfies an analogous equation for p .  
Hence, the complete expression for the infinite-plane correlation function is a combination 
of such solutions: 

(16) 

where the coefficients S,, are determined by requiring (uouo) to be single-valued. By 
normalizing the functions fp9 (mlp )  it is also possible to determine (the squares of) the 
structure constants in (15).  However, all such shucture constants for the minimal theories 
are already known [9],  and in particular [5] 

c:, = 1 (174 
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c 3 3 - [  2 - r ( I + -  :) r2 ( I - -  :) r ( I + -  :) r ( I - -  m 3 r z ( 1 + 3 + - & ) 1  

/[I-( 1 - i)r2( 1 + ;)r (1 - :)r ( I + -&) 

As will be seen in the following section on half-plane correlation functions, the previous 
set of solutions (14), as well as the structure constants (17), are also the basic ingredients for 
determining order-parameter correlations in bounded domains with fixed and free boundary 
conditions. 

4. Semi-inlinite geometry and boundary conditions 

The semi-infinite plane is the simplest geometry for studying boundary effects in a two- 
dimensional model. Using conformal transformations to other domains, such as an infinite 
strip, disc or square, many results may be directly canied over to these geomehies. In 
particular, the half-plane correlation functions can be mapped to all other simply-connected 
domains so that surface exponents, for instance, can be determined. 

Introducing a boundary to a system allows new types of transitions to occur in its 
neighbourhood [lo]. At the so-called ordinary transition the boundary is free (open) 
and orders simultaneously with the bulk. The corresponding boundary condition in the 
continuum limit is that the magnetization vanishes at the boundary: ( U )  = 0. At the 
extmordinary transifion the boundary spins are fixed in one direction so that the bulk 
orders in the presence of an ordered boundary. This is referred to as a fixed boundary 
condition, for which the magnetizatioii diverges at the boundary in the continuum limit: 
(U) -+ 00. In dimensions higher than two, there is also the possibility that the surface 
orders independently without applying an external field. 

The former techniques for deriving correlation functions in the infinite plane can now 
also be used for a theory defined in a half-plane [3]. Due to the geomettic constraint of 
the latter, half of the conformal symmetries are redundant so that one is left with only 
analytic functions. As a result, an n-point function in the upper half-plane will satisfy the 
same differential equation as a 2n-point function in the plane. However, the solutions are 
combined in a different manner in order to respect the appropriate boundary conditions. 
For a correlation function whose solutions satisfy a second-order differential equation, the 
two solutions themselves provide enough information for such a choice. In the case we are 
considering here, we have four solutions, and in order to construct the right combination 
for each boundary condition, we have to make a detailed analysis of the bulk properties of 
the wanted correlation function (uu) as well as the boundary properties of the fields in the 
operator-product algebra of uu. 

Due to the presence of a boundary, correlations will decay with different exponents 
parallel and perpendicular to it. The power-law correlation between two points parallel to 
the boundary, 

defines the surface exponent X I ,  (2x11 = q). For any direction not parallel to the boundary, 
i.e. when one of the points approaches the bulk, the analogous exponent is governed by 
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( x  + x11)/2. Hence, 211 is naturally interpreted as a boundary scaling dimension. It appears 
in the Kac formula (2) for boundary operators and is universal for each model and boundary 
transition. However, a boundary operator does not in general have the same ( p .  q)-indices 
as the corresponding primary field in the bulk. It need not even be primary, i.e. it can have 
x l  = hp,q + n, where n is a positive integer. From the half-plane consmction of conformal 
field theory one can see that the boundary operators are found in the OPES of bulk operators 
and their mirror images on the other side of the boundary. Hence, xli corresponding to a 
bulk operator r$ is to be found in the OPE of $ with itself. 

After these general remarks, let us now turn io the calculation of half-plane correlation 
functions. We will derive ( U U ) ~  for free and fixed boundary conditions on the order para- 
meter U ,  Moreover, their asymptotic behaviour will determine the boundary dimensions xII 
that, together with the scaling dimensions x = 2hz.z in (3), determine all other boundary 
dimensions in any two-dimensional geometry. In addition, we will derive one-point 
amplitudes of energy-like operators (even under spin reversal) and directly see how duality 
relates fixed and free boundary conditions. 

The relation between (a(zl)u(zz)) in the half-plane and ( u ( ~ I ) u ( ~ ~ ) u ( ~ ~ ) u ( z ~ ) )  in the 
infinite plane is that they satisfy the same partial differential equation for 23 = ?.I and 
z4 = 22 [3]. With this substitution in (ll),  we have 

with 

and the cross-ratio 

The coordinates in the half-plane are given by z j  = x, + iyj, y z 0. In contrast with 
the former case, this correlation function is single-valued for any choice of coefficients 
aPq. The appropriate combination is instead determined by imposing free or fixed boundary 
conditions on the order parameter U ,  which is most conveniently done by changing to a new 
basis for the solutions to (13). In the present basis (14), the hypergeometric functions can 
be represented by Gauss series for IpI < 1, i.e. in the bulk limit I Z I  - 221 + 0. However, 
as we expect to observe the influence of the boundary at long distances, IZI - ZZI + w, 
we analytically continue (13) to p = -CO and obtain the following set that can be series 
expanded for IpI > 1: 
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; I+- . -  , I t -  m + l  m + l  m + l ' p  '> 3 1 

x F( -  1 1 2 3 1  
,1-- 

m t l  m t l  m '  m '  

2 
+ F  

(224 

The matrix that relates the two sets of sofutions factorizes in the Kac indices: 

f p s ( m l ~ )  = Mpr(m)Nq,(~)g,,(mlp). (23) 

Here summation over repeated indices is implied, and 
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The different boundary conditions together with the long-distance behaviour of the 
correlation function put restrictions on the coefficients Bpq. These restrictions can be 
determined from an expansion of (26) in inverse powers of p 

with h1,l = 0 and h,,q in (4) aSd  (5). In the following discussion we will also use the fact 
that 0 < h3,3 c h1.3 < h3.1 < 2 f o r m  2 3. 

Let us first consider fixed boundary conditions for which ( U )  # 0. Then, at large 
distances ( p  + -CO), we must have (uu) + ( U ) @ )  # 0. Comparing this with (28). we 
conclude that 811 # 0. From the connected two-point function ( U U ) ~  it is now possible 
to obtain the boundary dimension xa (18). It has been shown by Burkhardt and Cardy 
that this must be an even integer as U has a non-vanishing expectation value induced by 
the boundary [ 1 I]. Subtracting the disconnected part from (28) and comparing this with 
the analogous Y&) - p-*I, we see that in order to get an even integer, we must let 
831 = 813 = 8 3  = 0. The value of fill is finally fixed by requiring that the correlation 
function is normalized: (uu) -+ 12, - Z Z I - ~ ~  as / z l  - z2[ -+ 0. By that we conclude for 
fixed boundary conditions 

x iT 811 =2cos-cos- 
m m + l  

831 = 813 8 3  = 0 

XI1 = 2 .  

Turning to the case of a free boundary, it is not as straightforward to select the 
appropriate solutions. Due to unbroken spin-reversal symmetry, (U) = 0, the two-point 
function decays at long distances: (uu) + 0. From this consideration we have that 
PI, = 0, but no other information about the coefficients in (28). Instead, we have to 
analyse the bulk limit Iz1 - 221 --f 0, using the first set of solutions (14). From this we will 
derive equations for apP that in turn will impose more constraints on ppq .  However, it turns 
out to be advantageous to use this approach without specifying the boundary conditions 
from the beginning. By specializing to a fixed boundary at a later stage, this will make i t  
possible to verify (29). It will also be easier to analyse the implications of a free boundary 
when we first have made analogous calculations for the simpler fixed-boundary case. 

Taking the expectation value of the OPE (15) with the explicit co-ordinate dependence 
inserted, we obtain the following short-distance behaviour of (au): 

The expectation values (4) follow from the infinite-plane correlation function 
($(zI)@(zz)) - I Z I  - Z Z I - ~  by substituting zz = 21: 
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with d an amplitude depending on the boundary condition on U. Using (19), we now see 
that 

as p + 0. As this expression has to coincide with a short-distance expansion of (20) 
analogous to (28), we are able to identify the corresponding coefficients 

where we have explicitly used the normalization of the identity operator: All = I .  The 
structure constants C,, are determined only up to a sign and we are free to choose the 
positive solutions to (17). (One can always use non-negative structure constants in the 
unitary minimal series of conformal field theory [9].) If we now combine (33) with (27), 
we may eliminate the rr,,-coefficients and get four linear equations for pP4 including the 
three amplitudes d31, d 1 3  and d33 .  At least one of the former is given by the previous 
conditions on pPq and two of the latter can be determined independently, as will be shown 
in the following. Altogether, we will have four linear equations in four variables. It is then 
an easy task to solve these equations and write down the half-plane correlation functions 
for free and fixed boundaries. 

First we need to determine the amplitudes A31 and d l 3 ,  The corresponding operators 
do not only appear in the operator algebra we are considering here, but also in 

++ - n + cw (34) 

where @ = @ I , ~ ( & , I )  and @' = @1,3(@3,1). Hence, we may extract the amplitudes from 
the half-plane correlation functions (+1,&,2) and (@~, I~Z, I )  that have been derived for all 
multicritical king models [12]. Comparing the expectation value of (34) with a short- 
distance expansion of the correlation functions in 1121 we identify for (@) # 0 

and for (4) = 0 

Here the conformal weight h equals h1.z or hz.l in (6) and the structure constant C' is 
determined by the single-valuedness condition of the corresponding four-point functions in 
the infinite plane [13]. In both cases this gives 
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The next step is to consistently combine (35) and (36) with the boundary conditions on 
the order parameter U. As the fixed-boundary case is somewhat simpler; we start with this 
and compare the result with (29). In this case (35) applies for both 4 = 41,~ and q52,jT. 

Together with (37), using (6), we get 

d 3 1  = d(m)  
d13 = A(m + 1) 

with 

As a check, we have verified this result by deriving it directly from (33) and (27) with the 
fixed-boundary condition fi l l  = 8 1 3  = &I = 0. For later purposes we also give the third 
amplitude: d 3 3  = d31A13. 

For a free boundary, we may have either of the two equations (35) and (36). To 
determine A13, on the one hand, we have to consider 4 = q51.2 which is even (odd) under 
spin reversal for m even (odd). Hence, we must use (35)) for m even and (36) for m odd. 
For d13, on the other hand, the converse is true. Together with (37), this leads to 

-A-'(m) m even 

A(m + 1) m even 
m odd. 

m odd 

I -d-' (m + 1 )  A13 = 

Using these amplitudes in (33) combined with (27) and the condition ,311 = 0, we finally 
obtain for a free boundary that all ppq except (813) vanish form even (odd). We also have 
for the last amplitude A33 = A31d13, as for the case of fixed boundary spins. Finally we 
exeact the boundary dimension from the long-distance behaviour of (uu): XI, = h3,1(h1.3) 
for m even (odd). Altogether, for free boundary conditions and m even, 

n n r ( -Z /m)r(3 /m)  
m m + 1 r (2 /m)P( - l /m)  

831 = ~ C O S - C O S -  

2 
m x n = l + -  

while for m odd, 

2 
m + l  

x1,=1-- 

t In [12], ($#) with 4 even ((4) # 0) and # odd ((#) = 0) is derived for a free boundary. However, the first 
case ( (9 )  # 0) also applies to a fixed boundary for my 4 (= 41.2 or 4.1). 
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For the king model (m  = 3) we recover the known free-boundary correlation function 
and surface exponent X I I  = 4 [3], and for the tricritical Ising model (m = 4) we confirm 
that X I I  = $. The latter was first obtained from analysing the operator content of the model 
as restricted by modular invariance and free boundaries [14]. It has also been derived by 
studying the finite-size scaling spectrum [15, 161. It is interesting to notice that the effect of 
an external field coupling to the order parameter at the boundary is quite different for even 
and odd m. For the ai-, penta-, . . . critical points we have XI, z 1 ,  i.e. the order parameter 
is irrelevant on the (onedimensional) boundary. For the bi-, tetra-, . . . critical points the 
converse is true., so that such an external field is relevant. 

In summary we have derived the half-plane order-parameter correlation functions of the 
(m - 1)-critical Ising models M ,  (m = 3 , 4 , .  . .). For a fixed boundary condition on the 
order parameter, the connected correlation function is 

yielding the boundary dimension X I I  =2. For a free boundary, we have for m even 

and for m odd 

with the corresponding boundary dimensions 

m even 
XI1 = [ ; L i $ i + l )  modd. 

The functions g,,(mlp) are given by (22) and the co-ordinate dependence of p by (21). 
As a by-product of this analysis, we have also determined a set of one-point amplitudes 

(defined for non-negative structure constants and such that all two-point functions are 
normalized to I L I  - Z Z ( - ~  as I Z I  - 221 + 0). For the order parameter U = h . 2  in the 
presence of a free boundary, the amplitude A must vanish in (31). However, for a fixed 
boundary condition that breaks the &-symmetry we have (U) # 0. The corresponding 
amplitude can be deduced from (43): 

a, = *2/= m m + l  (47) 

where the sign reflects the direction of the order parameter at the boundary. 
For the energy-like operators $31 and $13 we have derived amplitudes for fixed (38) 

and free (40) boundaries. In both cases, we also have that A33 = d31d13. The Ising model 
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includes only one of these energy-like operators, namely the energy density E = +,,,. For a 
fixed boundary it yields R = 1 and for a free boundary sl, = -1. Hence, we see directly 
that fixed and free boundaries are related via the Kramers-Wannier duality transformation 
( E  -+ - E )  [17, 181. The hicritical Ising model has three energy-like operators which are 
distinguished by duality [19]. From (4) and (5) with m = 4 it follows that the energy density 
( E  = 43.3) and the second sub-leading energy operator (E” = &,I) are dual odd, whereas 
the sub-leading energy operator (E‘ = +1,3) is dual even. This is verified by the fact that the 

fixed-boundary amplitudes A, = R, = 4- and sl,. = 1 transform as A -+ -A 
for E and e’’, and A -+ A for E‘ when changing to free boundaries. Once again we see that 
the duality transformation relates fixed and free boundaries. 

For the other models (m 2 5) we have a different scenario. It follows from (38) and 
(40) that it is not possible to interchange fixed and free boundaries by just changing sign 
of ‘dual odd’ operators. It is also necessary to alter the magnitude, as A + -1/A for 43,, 
and +,J in this case. Since this transformation does not leave the correlation functions of 
the original model (in the infinite plane) invariant, it is not a manifestation of a symmetry 
that has been broken by the boundary. Hence, for these models, fixed and free boundaries 
are not related via a duality transformation of a self-dual model. 

5. Conelusions 

Using conformal field theory we have shown how the multicritical Ising universality classes 
that describe generic &-invariant multicritical points are affected by a boundary. For 
this purpose, we have derived the order-parameter correlation functions in a semi-infinite 
plane constrained to fixed and free boundary conditions and obtained the universal surface 
exponents of the order parameters. In particular, they show that coupling an external field to 
the order parameter at the boundary is a relevant perturbation only for even-critical models. 
Our results for one-point amplitudes demonstrate how fixed and free boundaries are related 
by the Kramers-Wannier duality transformation for the Ising and tricritical king models. 
They also tell us that this relation does not hold for the other multicritical Ising models. 

Our correlation functions may also be conformally mapped to an infinite strip or a 
finite geometry in order to enable a detailed study of boundary- and finite-size effects. In 
particular, they will govern the susceptibilities, correlation length amplitudes and structure 
factors of these geometries. In another publication [20], we have canied out the last of these 
calculations for discs constrained to fixed and free boundary conditions. This was done to 
visualize how the apparent scaling-induced by finite size and boundaries-of structure 
factors at intermediate momenta depends on the boundary conditions applied. It was shown 
that the apparent scaling dimensions that can be extracted from such scaling laws either 
over- or underestimate the bulk scaling dimensions. 

An interesting extension to this work would be to analyse more general boundary 
conditions. One may, for instance, investigate the effects of a fixed boundary condition 
that is reversed on half of the boundary. This can be done by inserting a boundary operator 
at a given point on the boundary [Zl]. Another interesting possibility from an experimental 
point of view would be to consider effects of a quenched random field coupling to the order 
parameter at the boundary [22]. Using the replica method, Cardy showed that such a field 
is marginal for the king model and irrelevant for xi! z $ [23]. (See also Igl6i eta[ in [%I.) 
Hence, for the rest of the models we are considering here, it would not in fact lead to any 
relevant perturbations. A more general quenched disordered boundary may also be treated 
using the conformal-invariance technique with boundary operators. So far this has only 
been carried out for the king model [=I. 
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